Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder of the central nervous system (CNS) that can cause cognition, mobility, and sensory impairments. It is considered one of the most common non-traumatic causes of disability in the world. The aim of the present article was to review the clinical evidence related to medicinal plants in the management of MS symptoms.

Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases

Cannabis sativa active compounds are extensively studied for their therapeutic effects, beyond the well-known psychotropic activity. C. Sativais used to treat different medical indications, such as multiple sclerosis, spasticity, epilepsy, ulcerative colitis and pain. In this review, we will consider the structure-activity relationship (SAR) of cannabinoid compounds able to bind to cannabinoid receptors and act as therapeutic agents in neuronal diseases, e.g., Parkinson’s disease.

The arguments for and against cannabinoids application in glaucomatous retinopathy

Glaucoma represents several optic neuropathies leading to irreversible blindness through progressive retinal ganglion cell (RGC) loss. Reduction of intraocular pressure (IOP) is known as the only modifiable factor in the treatment of this disorder. Application of exogenous cannabinoids to lower IOP has attracted attention of scientists as potential agents for the treatment of glaucoma.

Plant-Based Cannabinoids for the Treatment of Chronic Neuropathic Pain

Chronic neuropathic pain is a prevalent condition that places a heavy burden on individuals and the healthcare system. Current medications have limitations and new approaches are needed, particularly given the current opioid crisis. This animal data suggests that cannabidiol and low dose nabiximols warrant consideration for clinical studies, at least as adjuvants to current drugs. Preclinical research is also required to identify other phytocannabinoids that have therapeutic potential.

Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases

Cannabis sativa active compounds are extensively studied for their therapeutic effects, beyond the well-known psychotropic activity. C. Sativas used to treat different medical indications, such as multiple sclerosis, spasticity, epilepsy, ulcerative colitis and pain. In this review, we will consider the structure-activity relationship (SAR) of cannabinoid compounds able to bind to cannabinoid receptors and act as therapeutic agents in neuronal diseases, e.g., Parkinson’s disease.

Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation

The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving.

Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products

Plants are a sustainable resource for valuable natural chemicals best illustrated by large-scale farming centered on specific products. Gaps in our understanding of how economically important compounds such as cannabinoids are produced are being identified using next-generation ‘omics’ to rapidly advance biochemical breakthroughs at an unprecedented rate.